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SUMMARY

Recent work by Yasseri and Rahnema has introduced a consistent spatial homoge-

nization (CSH) method completely in transport theory. The CSH method can very accurately

reproduce the heterogeneous flux shape and eigenvalue of a reactor, but at high computational

cost. Other recent works for homogenization in diffusion or quasi-diffusion theory are accurate

for problems with low heterogeneity, such as PWRs, but are not proven for more heterogeneous

reactors such as BWRs or GCRs.

To address these issues, a consistent hybrid diffusion-transport spatial homogenization

(CHSH) method is developed as an extension of the CSH method that uses conventional flux

weighted homogenized cross sections to calculate the heterogeneous solution. The whole-core

homogenized transport calculation step of the CSH method has been replaced with a whole-

core homogenized diffusion calculation. A whole-core diffusion calculation is a reasonable

replacement for transport because the homogenization procedure tends to smear out transport

effects at the core level. The CHSH solution procedure is to solve a core-level homogenized

diffusion equation with the auxiliary source term and then to apply an on-the-fly transport-

based re-homogenization at the assembly level to correct the homogenized and auxiliary cross

sections. The method has been derived in general geometry with continuous energy, and it is

implemented and tested in fine group, 1-D slab geometry on controlled and uncontrolled BWR

and HTTR benchmark problems. The method converges to within 2% mean relative error for

all four configurations tested and has computational efficiency 2 to 4 times faster than the

reference calculation.

viii



CHAPTER I

INTRODUCTION

Recently, Yasseri and Rahnema [13] developed a new consistent spatial homogenization

method (CSH) using only transport theory. The key feature of the CSH method is the

introduction of an auxiliary cross section to homogenize without reducing the phase space of

the problem. The advantage of CSH is that the homogenization can very accurately reproduce

the heterogeneous flux shape and eigenvalue of a reactor core while increasing computational

efficiency slightly with a correct choice of convergence criteria. However, the CSH method

requires multiple transport calculations, making it a computationally slower homogenization

than many nodal diffusion methods. This work extends the CSH method to diffusion theory,

resulting in a hybrid diffusion-transport homogenization method that can reproduce the

heterogeneous flux shape in less time than the CSH method.

Several recent techniques for homogenization within diffusion or quasi-diffusion have

been developed which focus on reproducing heterogeneous eigenvalue and reaction rates, but

do not focus on reproducing the heterogeneous flux profile [1, 4, 6, 8, 10]. For this reason,

many of these works do not report flux errors, but instead report reaction rates and average

flux over each homogenized region. These averages are often very accurate but are not a good

estimate of local flux or pin powers. Additionally, some of these methods perform simultaneous

homogenization with energy condensation, which can lead to error cancellation in the average

flux, but increased error in calculations of local effects.

Homogenization of the diffusion equation with discontinuity factors has long been an

accepted homogenization method. Recently Sanchez [10] introduced a method of applying both

current discontinuity factors (CDFs) and flux discontinuity factors (FDFs) to achieve more

accurate homogenizations. In Sanchez’s method, the FDFs are a generalization of Smith’s

discontinuity factors (DFs) homogenization [12]. Sanchez’s method achieves similar results

to Smith’s DFs but with better precision in reactors where transport effects dominate. Like
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other recent homogenization techniques in diffusion theory, these discontinuity factor methods

do not naturally re-homogenize and so cannot reproduce local effects, such as pin powers.

Since discontinuity factors are a common and accepted method for homogenization, the core

calculation results of this work are compared to homogenizations of the same cores using

discontinuity factors.

The Consistent Hybrid Spatial Homogenization (CHSH) method involves iterations be-

tween assembly-level transport calculations and whole-core diffusion calculations. Other

hybrid diffusion-transport iterative methods have been developed with a similar procedure.

One recent method by Roberts et. al. [9] was developed for the analysis of LWR cores. The

Iterative Transport-Diffusion Method (ITDM) developed by Roberts et. al. is similar to the

CHSH method in that it iterates between whole-core diffusion and assembly-level transport,

but one key difference is that the ITDM uses nodal diffusion rather than fine-mesh diffusion

at the core level. Additionally, the ITDM is not yet shown to work for fast reactors.

In this work, the CSH method introduced by Yasseri and Rahnema is extended to diffusion

theory, resulting in a hybrid homogenization method. The method is derived in general

geometry and continuous energy in Chapter 2, and has been implemented in 1-D and tested

using 1-D BWR and HTTR benchmark problems. The details of its 1-D implementation are

found in Chapter 3, and the results of the whole core tests are found in Chapter 4. The method

has been compared against both discontinuity factor homogenization and heterogeneous S-8

reference solutions in order to test for accuracy and efficiency. Concluding remarks and notes

about future work are provided in Chapter 5.
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CHAPTER II

METHOD

2.1 Spatial homogenization in transport theory

The CHSH method is derived using Yasseri and Rahnema’s Consistent Spatial Homogenization

(CSH) method as a starting point. For the sake of completeness, a summary of the derivation

of the CSH method is provided below [13]. The fine-mesh heterogeneous angular flux within

a homogenized region V h with isotropic fission and a scattering kernel dependent on the

scattering angle cosine µ0 = Ω̂ · Ω̂′ is governed by

Ω̂ ·∇ψ(~r,E,Ω̂)+σ(~r,E)ψ(~r,E,Ω̂)

=
∫

4π
dΩ̂′

∫
dE′σs(~r,E′ → E,Ω̂ · Ω̂′)ψ(~r,E′,Ω̂)

+ χ(E)
4πk

∫
4π

dΩ̂′
∫

dE′νσ f (~r,E′)ψ(~r,E′,Ω̂′)

∀~r ∈V h

(1)

The basis of the CSH method[13] is that the fine mesh solution can be obtained from a

homogenized equation with an auxiliary source term, as in Eq. (2).

Ω̂ ·∇ψh(~r,E,Ω̂)+σh(E)ψh(~r,E,Ω̂)

=
∫

4π
dΩ̂′

∫
dE′σh

s (E′ → E,Ω̂ · Ω̂′)ψh(~r,E′,Ω̂′)

+ χ(E)
4πkh

∫
4π

dΩ̂′
∫

dE′νσh
f (E′)ψh(~r,E′,Ω̂′)

+σaux(~r,E,Ω̂)φh
avg(E); ∀~r ∈V h

(2)

Here, the superscript ‘h’ refers to homogenized values. Note that the cross sections within

the homogenized region are no longer functions of~r. The symbol φh
avg represents the average

scalar flux in the homogenized region V h. In order to preserve the heterogeneous solution and

3



the heterogeneous eigenvalue, σaux must be defined as follows,

σaux = 1
φavg(E)

[∫
4π

dΩ̂′
∫

dE′∆σs(~r,E′ → E,Ω̂ · Ω̂′)ψ(~r,E′,Ω̂′)

+ 1
4πk

∫
4π

dΩ̂′
∫

dE′χ(E)∆νσ f (~r,E′)ψ(~r,E′,Ω̂′)

−∆σ(~r,E)ψ(~r,E,Ω̂)
]

(3)

where,

∆σt,s, f (~r)=σt,s, f (~r)−σh
t,s, f (4)

Yasseri and Rahnema[13] then expand σaux into spatial and angular components. Spherical

harmonics are used in the angular domain, while any set of orthogonal basis functions Gp(~r)

with weighting function w(~r) and factor ap can be used for the spatial domain. The auxiliary

cross section becomes

σaux(~r,E,Ω̂)=
L∑
`=0

∑̀
m=−`

P∑
p=0

Y`m(Ω̂)
4π

apGp(~r)σ`m,p
aux (E)

=
L∑
`=0

∑̀
m=−`

P∑
p=0

Y`m(Ω̂)
4π

apGp(~r)[α`m,p(E)+β`m,p(E)−γ`m,p(E)]

(5)

Where α,β and γ are defined in Eqs. (6) to (8)

α`m,p(E)= 1
φh

avg(E)

∫
4π

dΩ̂′
∫

4π
dΩ̂

∫
dE′

∫
V h

d~rw(~r)Gp(~r)Y ∗
`m(Ω̂)∆σs(~r,E′ → E,Ω̂ · Ω̂′)ψ(~r,E′,Ω̂′)

(6)

β`m,p(E)= 1
4πk

1
φh

avg(E)

∫
4π

dΩ̂′
∫

4π
dΩ̂

∫
dE′

∫
V h

d~rw(~r)Gp(~r)Y ∗
`m(Ω̂)χ(E)∆νσ f (~r,E′)ψ(~r,E′,Ω̂′)

(7)

γ`m,p(E)= 1
φh

avg(E)

∫
4π

dΩ̂
∫

V h
d~rw(~r)Gp(~r)Y ∗

`m(Ω̂)∆σ(~r,E)ψ(~r,E,Ω̂) (8)

where

φavg(E)= a0

∫
V h

d~r
∫

4π
dΩ̂w(~r)G0(~r)ψ(~r,E,Ω̂) (9)

2.2 Spatial homogenization in diffusion theory

The CSH method can be modified to use a low angular order, such as in diffusion theory.

Transport effects for the homogenized equation will tend to be less pronounced, as the
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homogenization will tend to smear out troublesome local effects. Implementation of a transport

based re-homogenization can correct for these transport effects in the solution.

If the scattering kernel in Eq. (2) is assumed to be linearly anisotropic, the equation

becomes

Ω̂ ·∇ψh(~r,E,Ω̂)+σh(E)ψh(~r,E,Ω̂)

=
∫

4π
dΩ̂′

∫
dE′ 1

4π

(
σh

s0(E′ → E)+3Ω̂ · Ω̂′σh
s1(E′ → E)

)
ψh(~r,E′,Ω̂′)

+ χ(E)
4πkh

∫
4π

dΩ̂′
∫

dE′νσh
f (E′)ψh(~r,E′,Ω̂′)

+σaux(~r,E,Ω̂)φh
avg(E); ∀~r ∈V h

(10)

where σh
s0 and σh

s1 are the homogenized zeroth and first order expansions of the scattering

kernel in Legendre polynomials of Ω̂ · Ω̂′. Taking the 0th and 1st angular moments of Eq. (10)

results in Eqs. (11) and (12).

∇· Jh(~r,E)+σh(E)φh(~r,E)

=
∫

dE′σh
s0(E′ → E)φh(~r,E′)+ χ(E)

kh

∫
dE′νσh

f (E′)φh +σ0
aux(~r,E)φh

avg(E)
(11)

∇·Πh(~r,E)+σh
tr(E)J(~r,E)=~σ1

aux(~r,E)φh
avg (12)

Where σ0
aux(~r,E) and~σ1

aux(~r,E) are defined in Eqs. (13) and (14) as the zeroth and first angular

moments of σaux(~r,E,Ω̂), Πh(~r,E) is defined in Eq. (15), and σh
tr(E) is defined in Eq. (16)

σ0
aux(~r,E)=

∫
4π

dΩ̂σaux(~r,E,Ω̂) (13)

~σ1
aux(~r,E)=

∫
4π

dΩ̂σaux(~r,E,Ω̂)Ω̂ (14)

Πh(~r,E)=
∫

4π
dΩ̂Ω̂Ω̂ψh(~r,E,Ω̂) (15)

σh
tr(E)=

∫
dE′J(E′)σh

s1(E′ → E)

J(E)σh
s1(E)

J(E)σh
s1(E) (16)

if the balance principle (
∫

dE′J(E′)σh
s1(E′ → E) = J(E)

∫
dE′σh

s1(E → E′)) is applied, then

Eq. (16) becomes the usual definition of the transport cross section.

5



Substituting Eq. (12) into Eq. (11) and making the P-1 approximation
(∇·Πh(~r,E)= 1

3∇φh(~r,E)
)

results in a single homogenized diffusion equation. Note that σ1
aux is a vector quantity.

−Dh(E)∇2φh(~r,E)+σh(E)φh(~r,E)

=
∫

dE′
[
σh

s0(E′ → E)φh(~r,E′)+ χ(E)
kh νσh

f (E′)φh(~r,E′)
]

+φh
avg

(
σ0

aux(~r,E)− ∇·~σ1
aux(~r,E)

σh
tr(E)

) (17)

In practice it is more convenient to discretize and use Eqs. (11) and (12) than Eq. (17). Using

Eq. (17) limits the possible discretizations that can be used in the solution. The spatial

discretizations of Eqs. (11) and (12) that is used in this paper will be discussed in Section 3.1.

The generalized albedo boundary conditions developed for quasi-diffusion[1] can be used

as boundary conditions for the homogenized diffusion equation,

Jh(~rs,E) · n̂s = 1−λ1(E)
1+λ0(E)

Crs (E)φh(~rs,E) (18)

λn(E)=
∫

2π− dΩ̂|n̂s · Ω̂|nψ(~rs,Ω̂,E)∫
2π+ dΩ̂(n̂s · Ω̂)nψ(~rs,Ω̂,E)

(19)

Crs (E)=
∫

2π− dΩ̂(n̂s · Ω̂)ψ(~rs,Ω̂,E)∫
2π+ dΩ̂ψ(~rs,Ω̂,E)

(20)

2.3 Solution procedure

Because the definition of σaux relies on a priori knowledge of the heterogeneous flux, it is nec-

essary to iterate and apply transport re-homogenization in order to obtain an approximation

for σaux. Extra care must be taken to reconcile the diffusion-based core calculation with the

transport assembly calculations used in re-homogenization. The procedure for solving a core

eigenvalue problem with the CHSH method is as follows:

1. Perform heterogeneous calculations at the assembly level with approximate boundary

conditions (such as specular reflective), and generate initial homogenized and auxiliary

cross sections for each assembly.

2. Solve the homogeneous whole-core diffusion equation using the homogenized cross

sections and the added σaux source term in each region.

6



3. Expand the core level incoming flux at the surface of each assembly. Two methods

are proposed and implemented in this paper to expand the incoming fluxes for each

assembly, the diffusion approximation method (DA) and the current iteration method

(CI). The DA method uses a diffusion approximation from the whole core calculation at

each assembly surface as in Eq. (21).

ψ(~rsurf,E,Ω̂)≈ 1
4π

(
φh(~rsurf,E)+3Ω̂ ·~Jh(~rsurf,E)

)
(21)

The CI method adapts the previous iteration’s surface flux by weighting it with the

change in surface current calculated by the core solver,

ψ(n+1/2)(~rsurf,E,Ω̂)≈ψ(n)(~rsurf,E,Ω̂)
J(n+1/2),h

inc (~rsurf,E)

J(n)
inc(~rsurf,E)

(22)

The superscript n refers to the iteration number. Half-integer iterations are the results

from core-level calculation, while whole-integer iterations are the results from assembly

level calculations. Jinc refers to the incoming current for each assembly surface and

can be defined by Jinc(~rsurf,E) = −~n · J(~rsurf,E), where ~n is the unit surface normal.

The major advantage of this method is that it preserves the transport angular flux

distribution (I.e., it does not require the angular flux at the surface to be linearly

anisotropic). The DA and CI methods do not preclude each other’s use and can, in fact,

be used interchangeably within a calculation.

4. Perform heterogeneous fixed source calculations at the assembly level with the core

eigenvalue from Step 2 and the incoming fluxes calculated in Step 3

5. Repeat Steps 2 to 4 until the flux and eigenvalue meet the convergence criteria defined

in Eqs. (23) and (24), where n is the iteration number as used in Eq. (22). Note that the

eigenvalue is calculated in the core solver step (half-integer iteration number), and the

average flux comes from the de-homogenized flux (integer iteration number).∣∣∣∣∣φ
h,n
avg(~r,E)−φh,n−1

avg (~r,E)

φ
h,n
avg(~r,E)

∣∣∣∣∣
max

< εφ (23)

∣∣∣∣kh,n−1/2 −kh,n−3/2

kh,n−1/2

∣∣∣∣< εk (24)

7



CHAPTER III

IMPLEMENTATION IN 1D

The CHSH method has been derived for the general case. For verification purposes, the

method has been implemented in 1-D. In the interest of simplicity, it is assumed that the

scattering kernel is isotropic and cross sections have been transport-corrected. The multigroup

approximation is used to discretize the energy variable.

3.1 1-D discretization

Let us define the following mesh on each homogenized region, {xi−1/2, i = 1, ..., N+1}, where N is

the number of meshes in a homogenized region. The width of the ith mesh is hi = xi+1/2−xi−1/2.

A convenient discretization for the homogenized diffusion equation is to define φi as a mesh

averaged value and to define Ji+1/2 on the mesh boundaries. This discretization will work well

with the re-homogenization methods proposed in Section 2.3 because J1/2 and JN+1/2 are the

currents on the boundaries of the region.

The central difference approximation of Eq. (11) is taken at the center of each mesh i,

1
hi

(J g
i+1/2 − J g

i−1/2)+σh,gφ
g
i = Sg

0,i (25)

where,

Sg
0,i ≡

G∑
g′
σh

s0(g′ → g)φ̃g′
i + χg

kh

G∑
g′
νσ

h,g′

f φ̃
g′
i +σg

aux,0,iφ̃
h,g
avg (26)

Some care must be taken to discretize the equation at the interface between meshes, because

some mesh interfaces may be located between two different homogenized regions. For this

reason, it is necessary to discretize Eq. (12) separately for the region to the left of the interface

and to the right of the interface. Two equations are derived, one by integrating from xi to

xi+1/2 and the other by integrating from xi+1/2 to xi+1,

2
3hi

(φg
i+1/2 −φ

g
i )+σh,g

i J g
i+1/2 = Sg

1,i (27)
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and
2

3hi+1
(φg

i+1 −φ
g
i+1/2)+σh,g

i+1J g
i+1/2 = Sg

1,i+1 (28)

where,

Sg
1,i ≡σ

g
aux,1,iφ̃

h,g
avg,i (29)

where the tildes indicate that the value from the last iteration is to be used (as is traditional in

numerical solutions of the diffusion equation), and where φ̃h,g
avg is taken from the appropriate

homogenized region. Note that in Eqs. (27) and (28) the homogenized cross sections have been

given an index i. This is because regions i and i+1 may lie in two different homogenized

regions. Within one homogenized region σi and σi+1 will always be identical.

Eqs. (27) and (28) can be solved for φi+1/2 and Ji+1/2 to obtain,

φ
g
i+1/2 =

σ
h,g
i+1Sg

1,i −σ
h,g
i S1,i+1 + 2σh,g

i+1
3hi

φ
g
i +

2σh,g
i

3hi+1
φ

g
i+1

2σh,g
i+1

3hi
+ 2σh,g

i
3hi+1

(30)

J g
i+1/2 =

1
hi+1

Sg
1,i + 1

hi
Sg

1,i+1 − 2
3hi hi+1

(φg
i+1 −φ

g
i )

σ
h,g
i

hi+1
+ σ

h,g
i+1
hi

(31)

Eq. (31) can be substituted back into Eq. (25) to yield a three point formula for the mesh

average flux.

The 1-D benchmark problems used by this paper have specular reflective boundary con-

ditions along the left side and vacuum conditions on the right. Both of these conditions can

be implemented by a modification to Eq. (31) at the boundary. Specular reflective boundary

conditions on the left side of the reactor are taken into account simply by setting J g
1/2 = 0.

Vacuum conditions (λ= 0) can be applied using Eq. (18) to obtain J g
N+1/2 = Cg

RφN+1/2, which

can be substituted into Eq. (27) resulting in the vacuum boundary condition at the right,

J g
N+1/2 =

Sg
1,N + 2

3hN
φ

g
N

σ
h,g
N + 2

3hN CR

(32)

3.2 Choice of basis functions

In 1D geometry, Legendre polynomials can be substituted for spherical harmonics. this means

that the auxiliary cross section over a homogenized region can be defined in 1-D by the

9



following adaptation to Eq. (5),

σ
g
aux(x,µ)= 1

φ
g
avg

{
1
2

∑
g′

[
σ

g′→g
s0 (x)−σh,g′→g

s0

]
φg′

(x)

+ 1
2k

∑
g′

[
χgνσ

g′

f (x)−χgνσ
h,g′

f

]
φg′

(x)

−
L∑

`′=0

2`′+1
2

P`′(µ)[σg(x)−σh,g]φg
`′(x)

} (33)

If fn(x) is chosen to be an orthonormal basis function on the interval with w(x)= 1, then the

auxiliary cross section can be further simplified to

σ
g
aux(x,µ)=

L∑
`=0

2`+1
2

Pl(µ)
N∑

n=0
fn(x)[δ0,`α

g
n +δ0,`β

g
n −γg

n,`] (34)

with

α
g
n =

∑
g′

∫ a
0 fn(x)

[
∆σ

g′→g
s0 (x)

]
φg′

(x)dx∫ a
0 φ

g(x)dx/a
(35)

β
g
n =

∑
g′

∫ a
0 fn(x)

[
χg∆νσ

g′

f (x)
]
φg′

(x)dx∫ a
0 φ

g(x)dx/a
(36)

γ
g
n,` =

∫ a
0 fn(x) [∆σg]φg

`
(x)dx∫ a

0 φ
g(x)dx/a

(37)

Some truncation error will be introduced to this approximation due to the need for a cut

off of the expansion function. This makes the choice of expansion function very important for

minimizing the numerical error of the auxiliary cross section and therefore the homogenization.

Yasseri and Rahnema[13] chose a Fourier series expansion in space, modifying the auxiliary

cross section into a periodic function over each region. A Fourier expansion was chosen in

order to minimize the truncation error for a given expansion order, however Fourier series

expansions suffer from Gibbs phenomenon issues near the discontinuities at the boundaries

of each region.

Instead of a traditional expansion function, a linear interpolation of the auxiliary cross

section is proposed from the fine mesh to the homogenized mesh. An advantage of choosing

a linear interpolation is that there can never be any overshoot near boundaries in σaux.

Additionally, fn(x) is evaluated in Eqs. (40) to (42) only as an integrand. Linear interpolation

as an integrand evaluates to numerical integration using the trapezoidal rule, which is an

accurate and consistent approximation to the true integral (with second-order error). Extra

10



care must be taken in order to account for the fact that this choice of fn(x) is not strictly an

orthonormal basis function. For a linear interpolation, fn(x) is chosen to be piecewise defined,

fn(x)=



x−xn−1
xn−xn−1

xn−1 ≤ x < xn

xn+1−x
xn+1−xn

xn ≤ x < xn+1

0 otherwise

(38)

Under this definition, new definitions of αg
n,βg

n, and γ
g
n,` are required, in order to account

for the new type of spatial basis function,

σ
g
aux(x,µ)=

L∑
`=0

2`+1
2

Pl(µ)
[

fn(x)(δ0,`α
g
n +δ0,`β

g
n −γg

n,`) + fn+1(x)(δ0,`α
g
n+1 +δ0,`β

g
n+1 −γ

g
n+1,`)

]
xn ≤ x < xn+1

(39)

with,

α
g
n =

∑
g′

∫ xn+1
xn−1

fn(x)
[
∆σ

g′→g
s0 (x)

]
φg′

(x)dx∫ xn+1
xn−1

φg(x)dx/a
(40)

β
g
n =

∑
g′

∫ xn+1
xn−1

fn(x)
[
χg∆νσ

g′

f (x)
]
φg′

(x)dx∫ xn+1
xn−1

φg(x)dx/a
(41)

γ
g
n,` =

∫ xn+1
xn−1

fn(x) [∆σg]φg
`
(x)dx∫ xn+1

xn−1
φg(x)dx/a

(42)
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CHAPTER IV

NUMERICAL RESULTS

4.1 1-D core problems

In this section, two different 1-D core problems are used to test the CHSH method. The

procedure described in Chapter 2 is used for both reactors. For each reactor, calculations

were performed using both the diffusion approximation re-homogenization and the current

iteration re-homogenization. The homogenized equation is solved using the diffusion equation

as described in Chapter 3, with the auxiliary cross section expanded in linear B-splines in

space. Core calculations were performed using a fine mesh, 47-group diffusion solver, and

re-homogenization calculations were performed using a fixed-source, 47-group S-8 trans-

port solver with diamond difference discretization. Re-homogenization convergence criteria

detailed in Eqs. (23) and (24) were chosen to be εφ = 10−3 and εk = 10−4. The results calcu-

lated for both cores are compared to results using standard discontinuity factor diffusion

homogenization.

Flux errors are reported comparing the results of the assembly fixed-source de-homogenization

to the fine-mesh transport reference solution. Flux errors are reported in average, mean, and

maximum relative errors, which are defined as

AVGg =
∫

dx|eg(x)|∫
dx

MREg =
∫

dx|eg(x)|φg
hom(x)∫

dxφg
ref

MAXg =max(|eg(x)|)

(43)

with

eg(x)= 100%
φ

g
ref(x)−φg

hom(x)

φ
g
ref(x)

(44)

Both the homogenized solver and the fine-mesh solver were discretized spatially to approx-

imately one half of a mean free path. This does not mean that the fine mesh and homogenized

12



equations are on the same mesh, however, as the homogenization process necessarily changes

the mean free path in each region.

4.1.1 1-D BWR core

BWR core calculations were performed on a GE9 BWR lattice[5] consisting of twelve fuel types

including four 5.84% Gd fuel pins. The core was generated by modeling in half symmetry with

full heterogeneity. Fuel bundles were depleted to 17 Gwd/THM for three void parameters

(0%, 40%, and 70%) in 47-groups. The HELIOS[11] lattice depletion code was used to perform

transport calculations on 2-D bundles and 1-D cross sections were generated using a flux-

weighted transverse integration of the regions of the 2-D model. The core is composed of

twenty bundles of width 15.24 cm for two different control configuration, controlled (SRI)

and uncontrolled (ARO). Each bundle of the core is composed of 11 regions as depicted in

Figure 1a. Bundles labeled “A” are fresh fuel, and bundles labeled “B” are depleted. The 1-D

BWR benchmark problem was generated by Douglass and Rahnema, and additional details

about the core can be found in Reference [2].
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(a) 1-D BWR bundle layout
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(b) 1-D BWR core layout for uncontrolled configuration
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(c) 1-D BWR core layout for controlled configuration

Figure 1: 1-D BWR core and bundle layouts for controlled and uncontrolled configurations.
Moderator regions are composed entirely of moderator, ‘+’ indicates the presence of a control
rod, and the percentage is a depletion void parameter[2]

13



The reference flux calculated for the controlled and uncontrolled BWR cores can be found in

Figures 2 and 3. The ARO configuration is fully uncontrolled, while the controlled configuration

has some control rods in, emulating the reactor near criticality, i.e., k for the controlled case

is meant to be close to 1. The reference calculation is a fully heterogeneous 47 group S-8

calculation with a diamond difference discretization scheme and half mean free path meshing,

totaling about 1300 total meshes for each reactor case.
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Figure 2: S-8 reference solution to the uncontrolled BWR reactor, k = 1.06795. Vertical
gridlines represent assembly interfaces.

Figures 4 to 7 show the flux error results of the homogenized calculation on both cores and

for both boundary condition approximations used in re-homogenization. The homogenized

calculations were performed using a 47 group diffusion homogenized solver and a 47 group S-8

rehomogenization. All meshings were done to about half of a mean free path, leading to the

coarse mesh solver having roughly half as many total meshes as the fine mesh solver. All four

full-core trials took a total of four outer iterations in order to converge to this solution. Note

that for all four cases flux errors are sharply peaked near the interfaces between homogenized

regions. This suggests that the majority of the error in the calculation is coming from the

approximation for the flux at the boundaries. The source of the error will be discussed in
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Figure 3: S-8 reference solution to the controlled BWR reactor, k = 1.00491. Vertical gridlines
represent assembly interfaces.
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greater detail in Section 4.2. Note that the flux error peaks at around ±4% or lower for all

four cases. The results of these calculations are tabulated in Table 6.

Of special note is the comparison between the diffusion approximation boundary conditions

and the current iteration boundary conditions for the BWR. In every case, the current iteration

approximation performed better in the fast spectrum. The fast spectrum for a BWR tends

to have higher anisotropy, and so this indicates that the current iteration method performs

better than the diffusion approximation method as anisotropy increases. However, the cur-

rent iteration method performs slightly worse than the diffusion approximation method in

the thermal spectrum and results in a slightly less accurate approximation for the reactor

eigenvalue.
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Figure 4: Relative flux error profile for the controlled BWR reactor with current iteration
re-homogenization.

For comparison, Figures 8 and 9 plot the relative flux error when the problem is homog-

enized using discontinuity factors. The discontinuity factor calculations were performed

using the same fine mesh as the heterogeneous problem in order to relax the dependence

of the pre-assumed nodal shape[7]. As expected, diffusion theory with discontinuity factor

homogenization does not effectively reproduce the transport solution. It should be noted that
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Figure 5: Relative flux error profile for the controlled BWR reactor with diffusion approxima-
tion re-homogenization.
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Figure 6: Relative flux error profile for the uncontrolled BWR reactor with diffusion approxi-
mation re-homogenization.
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Figure 7: Relative flux error profile for the uncontrolled BWR reactor with current iteration
re-homogenization.

the AVG error statistics are not the error in the average flux in each homogenized region, but

point-by-point error averaged over the entire core. Discontinuity factor homogenizations are

very accurate at reproducing the average flux in a homogenized region. This effect can be seen

in how Figures 8 and 9 oscillate around the 0% line. On average the error is very close to zero.

A tabulated summary of these results can be found in Table 6.

For additional comparison, Table 1 provides the results from each re-homogenization

iteration of the CHSH homogenization and the results for discontinuity factor homogenization.

For brevity, Table 1 only show the results for diffusion approximation based re-homogenization,

as the results for current iteration re-homogenization are very similar. Note that the CHSH

method achieves considerably smaller flux errors than the discontinuity factor method, even

after just one iteration. However, it does not converge as accurately on the reactor eigen-

value in one iteration, requiring at least one re-homogenization to accurately calculate the

eigenvalue.
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Table 1: 1D BWR core results for each iteration of the CHSH method using Current Iteration
re-homogenization compared with discontinuity factor errors

AVG (%) MAX (%) MRE (%)

Iter. ∆k (pcm) Fast Thermal Fast Thermal Fast Thermal

ARO*

1 -365 2.4 2.4 7.0 11.7 2.0 2.2
2 -8 1.4 0.9 6.5 4.5 1.2 0.8
3 22 1.3 0.7 5.4 4.4 1.2 0.7
4 24 1.3 0.7 5.5 4.4 1.2 0.7

SRI†

1 277 7.7 7.7 12.9 18.0 7.9 7.4
2 64 1.4 1.1 4.4 5.4 1.5 1.2
3 86 1.5 1.2 4.4 4.8 1.6 1.3
4 86 1.5 1.2 4.4 4.7 1.6 1.3

ARO DF‡ 42 3.4 26.5 12.3 60.2 3.5 26.7
SRI DF 146 3.2 22.8 12.7 57.5 3.3 23.4

*All rods out
†Some rods in
‡Discontinuity factor results
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Figure 8: Relative flux error profile for the uncontrolled BWR reactor homogenized with
discontinuity factors.
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Figure 9: Relative flux error profile for the controlled BWR reactor homogenized with disconti-
nuity factors.
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4.1.2 1-D HTTR core

HTTR core calculations are performed on a 1-D benchmark problem based on a typical gas

cooled prismatic block reactor core. The cross section library for this reactor were derived

from a 2-D benchmark problem based on the Japanese High Temperature Test Reactor by

Douglass and Rahnema[3]. A simple layout of the core can be found in Figure 10. The core

consists of fifteen blocks and is modeled with center symmetry. There are total of six fuel

blocks, four control blocks, and six reflector blocks in the reactor. Two configurations of this

reactor are considered: one uncontrolled with all control rods out (ARO) and one controlled

with all control rods in (ARI). The difference between the two configurations is that in the ARI

configuration control rods have been inserted into the center control block, the outer control

block, and the second fuel block.

The blocks of the reactor are highly heterogeneous. Each fuel block consists of six fuel

pins and two graphite regions. The pins themselves are modeled as each having nine regions,

including fuel, gas, sleeve, and graphite regions. Control blocks are modeled as two control rods

with tube regions in a graphite block. For the ARI configuration, fuel block 2 has had number

densities of control material smeared into its graphite regions, simulating the insertion of

a control rod. The reactor has been modeled as specular reflective on the left side and with

vacuum conditions on the right side.

The reference flux calculated for the controlled and uncontrolled HTTR cores can be

found in Figures 11 and 12. The uncontrolled (ARO) configuration has a high eigenvalue

of 1.10297, while the controlled (ARI) configuration has a low eigenvalue of 0.82959. The

reference calculation is a fully heterogeneous 47 group S-8 calculation with half mean free

path discretization, totaling about 900 total meshes for each reactor configuration. This is a

coarser meshing than the BWR core due to the fact that the HTTR core is an optically thin

reactor.

Figures 13 to 16 show the flux error results of the homogenized calculation on both core

configurations and for the two different interface boundary condition approximations used in

re-homogenization. All homogenized calculations were performed using a 47 group diffusion

homogenized solver and a 47 group S-8 fixed-source assembly-level re-homogenization. Like
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Figure 10: 1-D HTTR core layout. In the controlled configuration, control rod cross sections
are used in fuel block 2 and in the outer control block.
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Figure 11: S-8 reference solution to the uncontrolled HTTR reactor, k = 1.10297. Vertical
gridlines represent assembly interfaces.
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Figure 12: S-8 reference solution to the controlled HTTR reactor, k = 0.82959. Vertical
gridlines represent assembly interfaces.

in the reference calculation, the core meshing for the homogenized case was taken to be about

half of a mean free path for each core. This leads to a coarser mesh for the homogenized

cores of about 400 total meshes. The HTTR cores tested both converged in six outer iterations

to the same whole-core convergence criteria as used for the BWR cores. The extra two re-

homogenization iterations are not unexpected, as the HTTR core has a significantly higher

mean free path than the BWR core, meaning that the effects from neighboring blocks is more

pronounced.

The plots of relative error given in Figures 13 to 16 have a very large error in the reflector

region of the reactor for the fast flux. This is largely because of the extremely high anisotropy

of fast flux in that region, and this error does not disappear with further iteration. However,

this high max error – as high as 33% in the controlled reactor – can be overlooked for both

reactors. Comparing against Figures 11 and 12, it can be seen that the fast flux in the reflector

region is exceedingly low, so while the relative error is as high as 33% for those regions, the

absolute flux error in those regions is nearly zero. Additionally, there is no fuel in the reflector

region, so error in the reflector region does not translate to error in eigenvalue or in any
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Figure 13: Relative flux error profile for the uncontrolled HTTR reactor with diffusion approx-
imation re-homogenization.
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Figure 14: Relative flux error profile for the uncontrolled HTTR reactor with current iteration
re-homogenization.
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Figure 15: Relative flux error profile for the controlled HTTR reactor with diffusion approxi-
mation re-homogenization.
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Figure 16: Relative flux error profile for the controlled HTTR reactor with current iteration
re-homogenization.
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reaction rates. For this reason, the mean relative error (MRE) column of Table 2 becomes very

important, as it weights the error by the flux in each region. Observation of the MRE column

indicates that the solution to both HTTR cases is within 1% of the reference flux at any point.

So that the flux error in the fuel regions can be discerned from the plots, Figures 17 to 20

provide the same information but truncate the reactor before the reflector region. In these

plots it can be seen that, like the BWR cores, the HTTR cores have flux errors peaked at

assembly interfaces for both re-homogenization methods. It can be seen that the current

iteration re-homogenization tends to have significantly less peaking near assembly interfaces

for the HTTR, especially in the fast groups, where there is virtually no peaking near assembly

interfaces.
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Figure 17: Relative flux error profile for the fuel and control regions of the uncontrolled HTTR
reactor with diffusion approximation re-homogenization.

For comparison, the both configurations of the HTTR core have also been calculated using

a discontinuity factor diffusion homogenization. The discontinuity factor homogenization

does not work very well for the fast reactor due to high anisotropy throughout the reactor.

Figures 21 and 22 show the flux error resulting from the discontinuity factor calculations.

Note especially the effects of anisotropy in the controlled reactor, where the error reaches 80%
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Figure 18: Relative flux error profile for the fuel and control regions of the uncontrolled HTTR
reactor with current iteration re-homogenization.
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Figure 19: Relative flux error profile for the fuel and control regions of the controlled HTTR
reactor with diffusion approximation re-homogenization.
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Figure 20: Relative flux error profile for the fuel and control regions of the controlled HTTR
reactor with current iteration re-homogenization.

without oscillating back to 0%. In the BWR core, the the large flux errors of the discontinuity

factor method averaged out over each bundle, resulting in an accurate approximation of the

core eigenvalue. In the HTTR core, the error does not oscillate about 0%, so the error does

not cancel in each homogenized region, which leads to high errors in eigenvalue. Table 2 is a

breakdown of the CHSH results by iteration order. It can be seen that after one iteration the

CHSH method obtains similar results to discontinuity factor methods, with slightly better

flux errors and marginally more accurate eigenvalue results.
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Figure 21: Relative flux error profile for the uncontrolled HTTR reactor with discontinuity
factor homogenization.
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Figure 22: Relative flux error profile for the controlled HTTR reactor with discontinuity factor
homogenization.
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Table 2: 1D HTTR core results for each iteration of the CHSH method using Current Iteration
re-homogenization compared with discontinuity factor errors

AVG (%) MAX (%) MRE (%)

Iter. ∆k (pcm) Fast Thermal Fast Thermal Fast Thermal

ARO

1 -3510 9.9 3.3 29.9 9.4 5.0 3.7
2 222 8.6 0.4 32.3 1.0 0.8 0.4
3 -51 8.4 0.3 32.2 0.7 0.5 0.3
4 -29 8.3 0.3 32.1 0.6 0.5 0.3
5 -32 8.4 0.3 32.1 0.6 0.5 0.3
6 -30 8.4 0.3 32.1 0.6 0.5 0.3

ARI

1 -6081 38.3 34.2 62.8 60.2 12.5 14.9
2 584 7.9 3.4 28.1 7.6 1.3 1.1
3 -95 8.9 2.1 33.6 5.0 0.7 0.7
4 -18 8.6 2.1 33.3 5.1 0.7 0.6
5 -29 8.6 2.1 33.3 5.2 0.7 0.6
6 -27 8.6 2.1 33.3 5.2 0.7 0.6

ARO DF -3837 15.9 4.3 62.4 18.8 6.2 4.9
ARI DF -5560 39.4 39.5 79.1 85.4 12.4 15.8
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4.2 Sources of error

For future improvements to the CHSH method it is important to examine the largest con-

tributing factors to error in the solution. One of the most restrictive assumptions of the

CHSH method is the method used to determine interface angular fluxes to use as boundary

conditions for assembly-level fixed-source re-homogenization. This is restrictive because the

diffusion homogenized solver is necessarily at most linearly anisotropic. The current iteration

method of re-homogenization has been introduced to somewhat temper this effect, but it

is interesting to examine the amount error to the solution that originates in the interface

condition approximation.

To this end, this section presents a calculation wherein linearly anisotropic interface fluxes

are calculated starting from the fine mesh heterogeneous reference solution. Those interface

fluxes are then used as boundary conditions for assembly-level fixed-source calculations, and

the results are compared to the reference solution. This manner of calculation assures that all

of the error in the solution is introduced solely by the interface condition. Only the diffusion

approximation interface approximation can be tested in this manner, due to the lack of an

iteration on which to apply the current iteration method.

Figures 23 and 24 show the flux error introduced by the interface approximation for the

controlled BWR core and the uncontrolled HTTR core. Like in the full CHSH method, the flux

error is peaked at assembly interfaces, and peaks at similar values. Table 3 summarizes the

results for all four core and configuration combinations. From this, it can be seen that the

error introduced by the interface approximation comprises the vast majority of the error in

the CHSH method, since the values in Table 3 are close to the full error in the CHSH method

for both cores.
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Figure 23: Relative flux error introduced by the interface boundary condition approximation
for the 1-D controlled BWR core
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Figure 24: Relative flux error introduced by the interface boundary condition approximation
for the 1-D uncontrolled HTTR core
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Table 3: Flux errors resulting from performing fixed-source calculations using diffusion
approximation boundary conditions generated from reference solutions.

AVG (%) MAX (%) MRE (%)

Core Config. Fast Thermal Fast Thermal Fast Thermal

BWR ARO 2.1 1.1 2.7 3.5 2.1 1.2
BWR SRI 1.9 1.0 3.1 3.7 1.9 1.0
HTTR ARO 5.4 0.9 24.3 2.3 0.7 0.7
HTTR ARI 0.8 0.7 24.3 2.3 0.7 0.7
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4.3 Computational efficiency analysis

Like in Yasseri and Rahnema’s [13] discussion of the consistent spatial homogenization

method, the CHSH method can benefit from progressively tightening convergence criteria. A

progressively tightening convergence criteria is beneficial because the auxiliary cross section

relies on the previous iteration’s solution. The progressively tightening critera for the whole

core calculation were initially set at εk = 10−5 and εφ = 10−2, and then decreased by a factor

of 10 for each iteration, to a minimum of εk = 10−8 and εφ = 10−5. A different system of

convergence criteria tightening or an adaptive system are not presented here, but could be

expanded upon in future work.

Tables 4 and 5 summarize the complete results of the CHSH method without progressively

tightening convergence. In particular, the column for Speedup displays the relative speed

increase of the calculation to the reference calculation. Speedup is defined as 1
NCT , where NCT

is the Normalized Calculation Time, the calculation time normalized to the calculation time

of the reference solution. Note that the HTTR cores actually take longer to calculate than

the reference solution without progressively tightening convergence criteria. Tables 6 and 7

summarize the complete results with progressive convergence criteria. First, it should be noted

that the progressive convergence criteria have virtually no effect on the solutions themselves,

but serve purely to increase the speed of the calculation. For all cases, significant – and

sometimes dramatic – improvement can be achieved by switching to progressive convergence

criteria. With progressively tightening convergence criteria, the CHSH method converges

between two and four times as fast as the reference solution, slower for optically thin cores,

with at most 2% mean relative flux error.
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Table 4: 1D BWR core computation time comparison for two different re-homogenization
schemes with fixed convergence criteria

AVG (%) MAX (%) MRE (%)

Speedup§ ∆k (pcm) Fast Thermal Fast Thermal Fast Thermal

ARO
DA¶ 2.25 24 1.2 0.7 5.5 4.4 1.2 0.7
CI|| 2.72 86 2.0 1.1 4.4 4.7 2.0 1.0

SRI
DA 2.72 86 2.0 1.1 4.4 4.7 2.0 1.0
CI 2.67 90 0.8 0.8 3.3 5.3 0.8 0.9

ARO DF 42 3.4 26.5 12.3 60.2 3.5 26.7
SRI DF 146 3.2 22.8 12.7 57.5 3.3 23.4

Table 5: 1D HTTR core computation time comparison for two different re-homogenization
schemes with fixed convergence criteria

AVG (%) MAX (%) MRE (%)

Speedup ∆k (pcm) Fast Thermal Fast Thermal Fast Thermal

ARO
DA 1.23 -30 8.4 0.3 32.1 0.6 0.5 0.3
CI 0.98 -27 6.2 0.9 20.1 1.6 0.6 0.9

ARI
DA 0.94 -27 8.6 2.1 33.3 5.2 0.7 0.6
CI 0.84 -17 6.6 2.8 21.5 5.6 0.6 0.8

ARO DF -3837 15.9 4.3 62.4 18.8 6.2 4.9
ARI DF -5560 39.4 39.5 79.1 85.4 12.4 15.8

§ 1
NCT , where NCT is Normalized computation time (normalized to the reference calculation)

¶Diffusion approximation re-homogenization conditions
||Current iteration re-homogenization conditions
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Table 6: 1D BWR core computation time comparison for two different re-homogenization
schemes with progressively tightening convergence criteria

AVG (%) MAX (%) MRE (%)

Speedup ∆k (pcm) Fast Thermal Fast Thermal Fast Thermal

ARO
DA 2.72 24 1.3 0.7 5.3 4.3 1.3 0.7
CI 3.12 29 0.4 1.0 2.5 4.1 0.4 1.0

SRI
DA 3.52 85 2.0 1.1 4.4 4.7 2.0 1.0
CI 4.29 89 0.9 0.8 3.4 5.4 0.9 0.9

ARO DF 42 3.4 26.5 12.3 60.2 3.5 26.7
SRI DF 146 3.2 22.8 12.7 57.5 3.3 23.4

Table 7: 1D HTTR core computation time comparison for two different re-homogenization
schemes with progressively tightening convergence criteria

AVG (%) MAX (%) MRE (%)

Speedup ∆k (pcm) Fast Thermal Fast Thermal Fast Thermal

ARO
DA 2.72 -26 8.4 0.3 32.2 0.6 0.5 0.3
CI 2.89 -24 6.2 0.9 20.1 1.6 0.6 0.9

ARI
DA 1.98 -25 8.6 1.9 33.3 4.6 0.7 0.6
CI 1.84 -16 6.6 2.6 21.5 5.0 0.6 0.8

ARO DF -3837 15.9 4.3 62.4 18.8 6.2 4.9
ARI DF -5560 39.4 39.5 79.1 85.4 12.4 15.8
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CHAPTER V

CONCLUDING REMARKS AND FUTURE WORK

In this work, a consistent hybrid diffusion-transport spatial homogenization (CHSH) method

has been developed that makes use of conventional flux-weighted cross sections and reproduces

the heterogeneous transport solution to mean relative error of 2% with 2 to 4 times faster

computational speed. The method solves the whole-core calculation using homogenized

diffusion theory and then makes use of on-the-fly transport re-homogenization to update its

auxiliary source term.

The CHSH method has been verified for stylized BWR and HTTR benchmark problems

in 1-D configurations. Two different approximations were tested for the boundary conditions

used in re-homogenization. The first, the diffusion approximation (DA) method uses the

diffusion solution to develop a linearly anisotropic flux at assembly interfaces. The second,

the current iteration (CI) weights the previous iteration’s transport-calculated interface flux

with the change in incoming current at the boundary. The DA method is sufficient in thermal

reactors, but for the fast reactor the CI method has better accuracy. Additionally, the fast

reactor required six re-homogenization iterations to converge, while the BWR required only

four.

It was shown that most of the error introduced by the CHSH homogenization comes

from the approximation used as the interface condition, and so for future work other re-

homogenization methods should be considered. One method which has shown promise in

preliminary testing is to perform a single core sweep during re-homogenization instead of

assembly-level fixed-source calculations altogether. This method may also save significant

computational time, as the assembly-level fixed-source calculations require many iterations to

converge.

Another interesting area of potential future work involves simultaneously collapsing

energy groups while homogenizing in space. As presented, the CHSH method does not involve
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any collapsing in energy, but does not prohibit simultaneous collapsing. Simultaneous collapse

of the energy variable could greatly increase computational efficiency to make this method

more practical.
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